\(\int \sqrt [3]{a+b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1071]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [F(-1)]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 35, antiderivative size = 35 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {2} (a+b) C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {4}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}}}+\frac {\sqrt {2} (b B-a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}}}+A \text {Int}\left (\sqrt [3]{a+b \sec (c+d x)},x\right ) \]

[Out]

(a+b)*C*AppellF1(1/2,-4/3,1/2,3/2,b*(1-sec(d*x+c))/(a+b),1/2-1/2*sec(d*x+c))*(a+b*sec(d*x+c))^(1/3)*2^(1/2)*ta
n(d*x+c)/b/d/((a+b*sec(d*x+c))/(a+b))^(1/3)/(1+sec(d*x+c))^(1/2)+(B*b-C*a)*AppellF1(1/2,-1/3,1/2,3/2,b*(1-sec(
d*x+c))/(a+b),1/2-1/2*sec(d*x+c))*(a+b*sec(d*x+c))^(1/3)*2^(1/2)*tan(d*x+c)/b/d/((a+b*sec(d*x+c))/(a+b))^(1/3)
/(1+sec(d*x+c))^(1/2)+A*Unintegrable((a+b*sec(d*x+c))^(1/3),x)

Rubi [N/A]

Not integrable

Time = 0.46 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx \]

[In]

Int[(a + b*Sec[c + d*x])^(1/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[2]*(a + b)*C*AppellF1[1/2, 1/2, -4/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*
Sec[c + d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + (Sqrt[2]
*(b*B - a*C)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c
+ d*x])^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + A*Defer[Int][(
a + b*Sec[c + d*x])^(1/3), x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt [3]{a+b \sec (c+d x)} (A b+(b B-a C) \sec (c+d x)) \, dx}{b}+\frac {C \int \sec (c+d x) (a+b \sec (c+d x))^{4/3} \, dx}{b} \\ & = A \int \sqrt [3]{a+b \sec (c+d x)} \, dx+\frac {(b B-a C) \int \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx}{b}-\frac {(C \tan (c+d x)) \text {Subst}\left (\int \frac {(a+b x)^{4/3}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}} \\ & = A \int \sqrt [3]{a+b \sec (c+d x)} \, dx-\frac {((b B-a C) \tan (c+d x)) \text {Subst}\left (\int \frac {\sqrt [3]{a+b x}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}+\frac {\left ((-a-b) C \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {\left (-\frac {a}{-a-b}-\frac {b x}{-a-b}\right )^{4/3}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt [3]{-\frac {a+b \sec (c+d x)}{-a-b}}} \\ & = \frac {\sqrt {2} (a+b) C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {4}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}}}+A \int \sqrt [3]{a+b \sec (c+d x)} \, dx-\frac {\left ((b B-a C) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {\sqrt [3]{-\frac {a}{-a-b}-\frac {b x}{-a-b}}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt [3]{-\frac {a+b \sec (c+d x)}{-a-b}}} \\ & = \frac {\sqrt {2} (a+b) C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {4}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}}}+\frac {\sqrt {2} (b B-a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}}}+A \int \sqrt [3]{a+b \sec (c+d x)} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 110.19 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.06 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx \]

[In]

Integrate[(a + b*Sec[c + d*x])^(1/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

Integrate[(a + b*Sec[c + d*x])^(1/3)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2), x]

Maple [N/A] (verified)

Not integrable

Time = 0.09 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.94

\[\int \left (a +b \sec \left (d x +c \right )\right )^{\frac {1}{3}} \left (A +B \sec \left (d x +c \right )+C \sec \left (d x +c \right )^{2}\right )d x\]

[In]

int((a+b*sec(d*x+c))^(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

int((a+b*sec(d*x+c))^(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

Fricas [F(-1)]

Timed out. \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

Timed out

Sympy [N/A]

Not integrable

Time = 2.43 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.97 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt [3]{a + b \sec {\left (c + d x \right )}} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((a + b*sec(c + d*x))**(1/3)*(A + B*sec(c + d*x) + C*sec(c + d*x)**2), x)

Maxima [N/A]

Not integrable

Time = 14.24 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(1/3), x)

Giac [N/A]

Not integrable

Time = 1.52 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.00 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/3)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(1/3), x)

Mupad [N/A]

Not integrable

Time = 24.97 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.11 \[ \int \sqrt [3]{a+b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int((a + b/cos(c + d*x))^(1/3)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int((a + b/cos(c + d*x))^(1/3)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)